五月婷久久综合视频,九九热视频精品在线观看视频,99精品亚洲国产一区二区三区,国产在线精品一区二区三区国…

聯(lián)系電話 4008121766

當前位置:首頁  >  技術文章  >  機器學習與連續(xù)流連載系列丨機器學習:人工智能的驅動力

機器學習與連續(xù)流連載系列丨機器學習:人工智能的驅動力

更新時間:2024-07-04      點擊次數(shù):632

機器學習與連續(xù)流連載系列丨機器學習:人工智能的驅動力

摘要

 

 

前期回顧:

 

機器學習與連續(xù)流連載系列丨使用康寧反應器集成在線光譜,通過半監(jiān)督機器學習識別化學反應式計量和動力學模型機器學習與連續(xù)流連載系列丨機器學習:人工智能的驅動力點擊進入原文查看

 

本期亮點

本期將對機器學習做一次全面感性認識:

  • 什么是機器學習?

  • 機器學習的工作流程是怎樣的?

  • 機器學習有幾種類型?

  • 機器學習也有局限性?

機器學習(Machine Learning, ML)作為人工智能(Artificial Intelligence, AI)的一個分支,正在逐漸改變我們與技術的互動方式。本文將探討機器學習的核心概念、工作流程、類型、優(yōu)勢與局限。

點擊關注公眾號,我們下期不見不散!


機器學習與連續(xù)流連載系列丨機器學習:人工智能的驅動力

 

在回答機器學習前,先回到人類的學習,什么叫做學習或者學會了?簡而言之就是發(fā)現(xiàn)規(guī)律,能根據已有情況,尋找規(guī)律,解決新問題

“過擬合”,打個比方就像某學生做大量題,他死記硬背,只會做已經做過的相同的題,遇到相同知識基礎的新題(稍微變化一下)就不會解答,也就是“泛化能力”差。

比如某某學生在模擬考試中,考試成績好,到了正式考試時,成績不理想,很多家長認為沒有考試運。當然這個有很多原因,比如考試時緊張,身體出現(xiàn)不適等,但有個原因就是其“泛化能力”差,模擬考是他做過的題,沒有從中“泛化”出規(guī)律去解答新題。

機器學習類似人類學習,根據大量題型總結規(guī)律,根據規(guī)律去解決新問題。

人工智能先驅Arthur Samuel,在1950年代將“機器學習”定義為,“使計算機能夠在沒有明確編程的情況下進行學習的研究領域”。

Nvidia認為“機器學習最基本的是使用算法解析數(shù)據,從中學習,然后對世界上的事物做出決定或預測。”

 

機器學習與連續(xù)流連載系列丨機器學習:人工智能的驅動力

傳統(tǒng)編程

 

機器學習與連續(xù)流連載系列丨機器學習:人工智能的驅動力

機器學習

傳統(tǒng)編程需要寫好嚴格的詳細的程序指令,根據輸入數(shù)據得到輸出結果。其難度在于程序的編寫,有時不能覆蓋某些新情況。比如做饅頭,寫好買1kg白面粉,和面加入X kg水,捏好形狀,放入蒸籠蒸X分鐘。如果遇到了玉米粉,它就不會做玉米饅頭了。

機器學習是通過算法和大量的做饅頭的書籍介紹等,總結出通用規(guī)律,這樣遇到玉米粉也能輸出相應做玉米饅頭的步驟。所以機器學習難在解析數(shù)據結構,發(fā)現(xiàn)規(guī)律。

 

機器學習與連續(xù)流連載系列丨機器學習:人工智能的驅動力

機器學習的工作流程包括以下幾個關鍵步驟:

機器學習與連續(xù)流連載系列丨機器學習:人工智能的驅動力

機器學習模型主要分為四種類型:

監(jiān)督學習:使用帶有明確描述或標簽的訓練數(shù)據,算法在“監(jiān)督者”的幫助下學習。監(jiān)督學習就像做題,有答案和目標可以參照。

無監(jiān)督學習:使用未標記的訓練數(shù)據,目的是在沒有具體指導的情況下發(fā)現(xiàn)數(shù)據中的模式、結構或關系。

半監(jiān)督學習:嚴格意義上來說不算獨立分類,顧名思義就是有一部分有明確描述的數(shù)據來訓練。例如上篇文章提到的半監(jiān)督學習。就是先做一部分給答案的題,然后根據規(guī)律去做另一半沒有答案的題目。

強化學習:計算機程序通過與環(huán)境的交互來學習,通過試錯來確定在特定情境下的最佳行動。

機器學習與連續(xù)流連載系列丨機器學習:人工智能的驅動力

優(yōu)勢

 

  • 數(shù)據處理能力:機器學習能夠處理大量數(shù)據,并自行發(fā)現(xiàn)模式和進行預測。

  • 靈活性:機器學習模型可以適應新數(shù)據,并隨著時間的推移不斷提高準確性。

  • 自動化:機器學習模型消除了手動數(shù)據分析和解釋的需要,實現(xiàn)了決策自動化。

局限

  •  過擬合和泛化問題:機器學習模型可能過于適應訓練數(shù)據,導致無法泛化到未見過的例子。

  • 可解釋性:一些機器學習模型像“黑箱”一樣運作,即使是專家也無法解釋它們的決策或預測。

  • 算法偏差:由于訓練數(shù)據可能包含人類的偏見,這可能導致算法偏差,產生不公平的結果。

 

 

汤阴县| 沙雅县| 基隆市| 汨罗市| 张北县| 浏阳市| 无棣县| 通山县| 宜兴市| 南阳市| 普安县| 永靖县| 来凤县| 西丰县| 渭南市| 静安区| 阿图什市| 浦城县| 建昌县| 昭苏县| 阜康市| 金坛市| 义乌市| 通化县| 迭部县| 郸城县| 大安市| 仙游县| 开江县| 德惠市| 梁山县| 大连市| 屏山县| 拉孜县| 齐齐哈尔市| 海兴县| 闵行区| 扶风县| 孙吴县| 鄱阳县| 定安县|